Oblique derivative problem for elliptic equations in non-divergence form with VMO coefficients
نویسندگان
چکیده
A priori estimates and strong solvability results in Sobolev space W 2,p(Ω), 1 < p < ∞ are proved for the regular oblique derivative problem 8<: Pni,j=1 aij(x) ∂u ∂xi∂xj = f(x) a.e. Ω ∂u ∂l + σ(x)u = φ(x) on ∂Ω when the principal coefficients aij are VMO ∩ L∞ functions.
منابع مشابه
Parabolic and Elliptic Equations with Vmo Coefficients
An Lp-theory of divergence and non-divergence form elliptic and parabolic equations is presented. The main coefficients are supposed to belong to the class V MOx, which, in particular, contains all functions independent of x. Weak uniqueness of the martingale problem associated with such equations is obtained.
متن کاملElliptic Differential Equations with Measurable Coefficients
We prove the unique solvability of second order elliptic equations in non-divergence form in Sobolev spaces. The coefficients of the second order terms are measurable in one variable and VMO in other variables. From this result, we obtain the weak uniqueness of the martingale problem associated with the elliptic equations.
متن کاملParabolic and Elliptic Systems with Vmo Coefficients
We consider second order parabolic and elliptic systems with leading coefficients having the property of vanishing mean oscillation (VMO) in the spatial variables. An Lq −Lp theory is established for systems both in divergence and non-divergence form. Higher order parabolic and elliptic systems are also discussed briefly.
متن کاملParabolic Equations with Partially Vmo Coefficients and Boundary Value Problems in Sobolev Spaces with Mixed Norms
Second order parabolic equations in Sobolev spaces with mixed norms are studied. The leading coefficients (except a) are measurable in both time and one spatial variable, and VMO in the other spatial variables. The coefficient a is measurable in time and VMO in the spatial variables. The unique solvability of equations in the whole space is applied to solving Dirichlet and oblique derivative pr...
متن کاملOblique derivative problem for non-divergence parabolic equations with discontinuous in time coefficients
We consider an oblique derivative problem for non-divergence parabolic equations with discontinuous in t coefficients in a half-space. We obtain weighted coercive estimates of solutions in anisotropic Sobolev spaces. We also give an application of this result to linear parabolic equations in a bounded domain. In particular, if the boundary is of class C1,δ, δ ∈ (0, 1], then we present a coerciv...
متن کامل